

Semi-Autonomous Floor Scrubber

Mechanical and Aerospace Engineering Blaine Byam, Evan Davies, Dillon Fox, Hayden Haas, Dr. John Liu, Joe Thompson II

Abstract

The project consisted of the design and fabrication of a semi-autonomous floor cleaner for Asama Coldwater Manufacturing (ACM). ACM provided a floor cleaner to be modified to meet their cleaning needs. The team manufactured components, wired motors/sensors, wrote a path following algorithm, analyzed the cost, and implemented safety features.

Customer Needs and Requirements

- Have the floor scrubber clean up dry and wet material
- Clean the figure eight forklift path
- Have the cleaner set to run one time each day
- The floor cleaner needs to not hinder traffic in the aisleways
- Floor cleaner should be battery powered Reduce the amount of man hours
- required to clean
- way (i.e., person/forklift) Modify the Watchman 24 BETCO

with a budget of \$3000

- Ability to clean both solids and liquids to Level 2-3 Custodial Standard
- Clean figure eight forklift path
- Cleaner shall be set to run once a day
- Floor scrubber must stop within 5-7 feet of human or forklift
- At least a three-hour battery life before needing to be recharged
- Man-hours put into cleaning the floor will be less than three hours
- Can stop when an obstacle is in its Additional Safety Features: E-Stop button, flashing lights and sounds
 - The cost of the prototype is under budget and the given floor scrubber is modified.

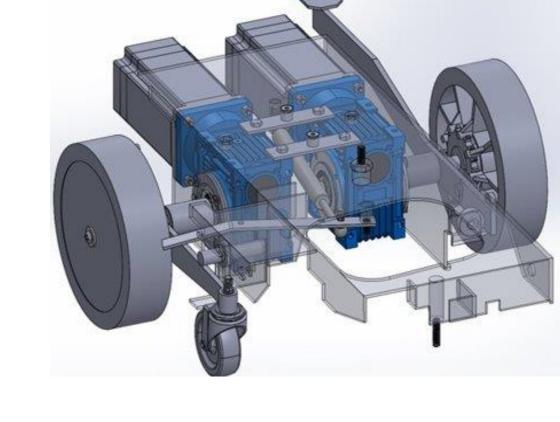
Concept Selection

boxes

Manufacturing

- targeting orientation Safety Features:
 - LiDAR and Sonar sensors
 - E-stop, blue light, & light bar

Two 12Nm stepper motors

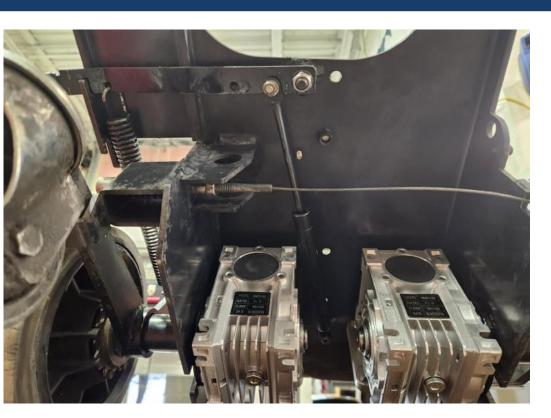

IMU used for tracking and

coupled with right angle gear

- Cleaning System:
 - Modified squeegee mount
 - Default configuration

Design Solution

GUI Design


Control Method:

- 90° turn utilized IMU
- Hardcoded a zigzag motion for the straights
- Control algorithm was made simpler as deadline approached

Machining:

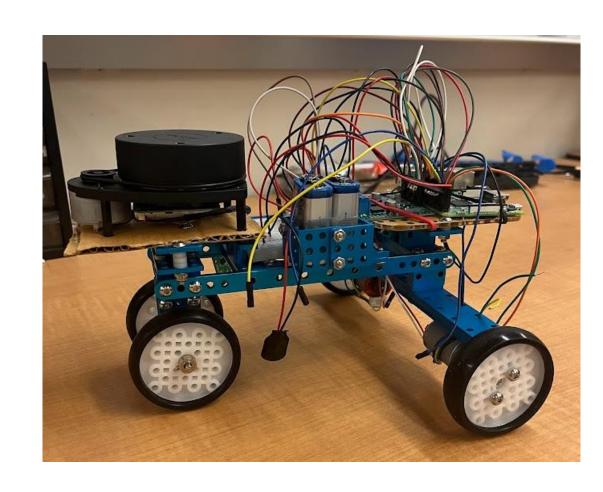
 ACM machined parts using created drawings

Component Integration:

Components necessary for movement were installed under the frame

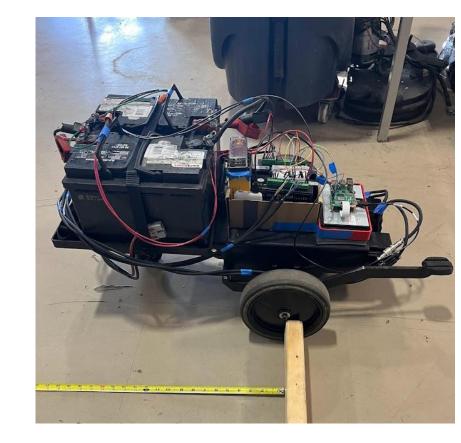
Software and **Electrical Mounting:**

- Made use of 3D Printing
- Final "Saddle Mount" was made of ABS; Test pieces were PLA



Final Assembly

Testing and Validation


Prototype 1:

- DC Motors Robot Kit
- Tested LiDAR and IMU to determine how accurate the robot can follow a figure 8

Prototype 2:

- Stepper Motors and Drivers with 24V supply
- Tested to see distance and turning with stepper motors.
- Used scrubber frame

Prototype 3:

- Fully assembled scrubber with all sensors attached
- Testing including straight line and 90° turns.
- Focus was using IMU and PID control to optimize path following
- Tested LiDAR and sonar functionality
- Configured scrubber to run from the GUI

Acknowledgments

Advisor(s): Dr. John Liu, Joe Thompson II **Sponsor:** Asama Coldwater Manufacturing (ACM)

