Abstract

The purpose of this project is to design a backend system that will separate waste solids from lime kiln flue gas. This will improve up the current baghouse. The flue gas will then be sent to an eventual carbon capture plant.

Carmeuse Lime & Stone

Carmeuse is a Belgian mining company that produces lime and limestone. They have plants around the world. The plant in Gary, Indiana that our team is working with produces quicklime (CaO) from limestone (CaCO₃) by driving off CO₂. Quicklime is used in various industries such as agriculture, steel, paper, cement, and wastewater treatment.

Waste Solid Separation from Flue Gas for Carbon Capture Sam Buckingham and Keely Brooks Industry Advisor: Brandon Villanueva Faculty Advisor: Jacob Borden Trine University: McKetta Department of Chemical & Bioprocess Engineering

Cyclone Design – Leith & Licht Empirical Design Methodology

D	1.5	m
Τ	500	K
Vo	100	m³/s
ρ _p	3340	kg/m ³
μ	3.17E-05	Pa*s
d	3.00E-05	m
ρ	0.2	kg/m ³

	Method - Lapple	Units
number of times gas turns (Nt)	27.504	turns
natural length (I)	2.183	m
efficiency (η)	0.998	
cut off diameter (dpc)	1.02E-06	m
pressure drop	606.8	Pa

Once a more efficient solid separation method is implemented, the eventual goal is to add a carbon capture plant that will reduce the carbon emissions of the quicklime process.

CARMEUSE

Design Decision

Criteria	Cyclone	Electrostatic Precipitation (ESP)
Pressure Drop		
Particle Size Range		
Separation Efficiency		
Space		
Equipment/Capital Cost		
Maintenance Costs		
Operating Costs		
Inherent Safety		
Inherent Simplicity		

Future Work