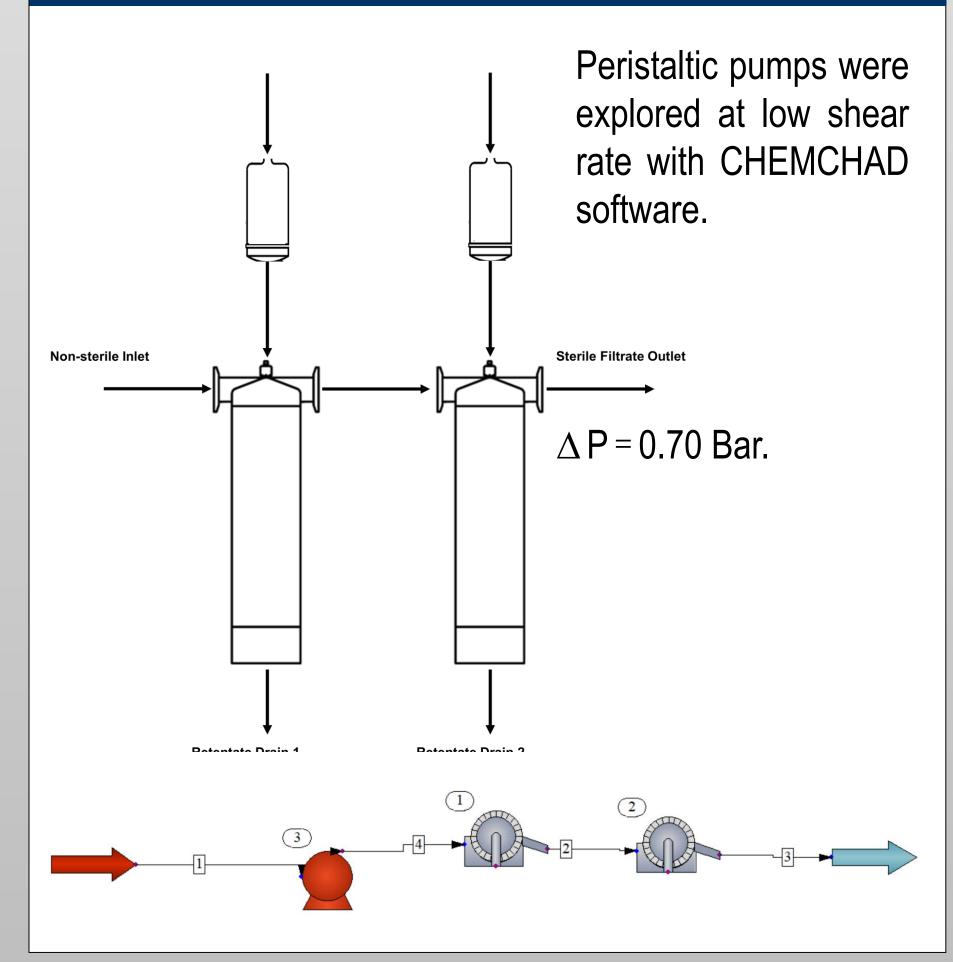
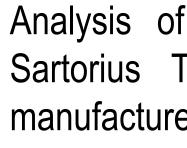
ERSI

Introduction

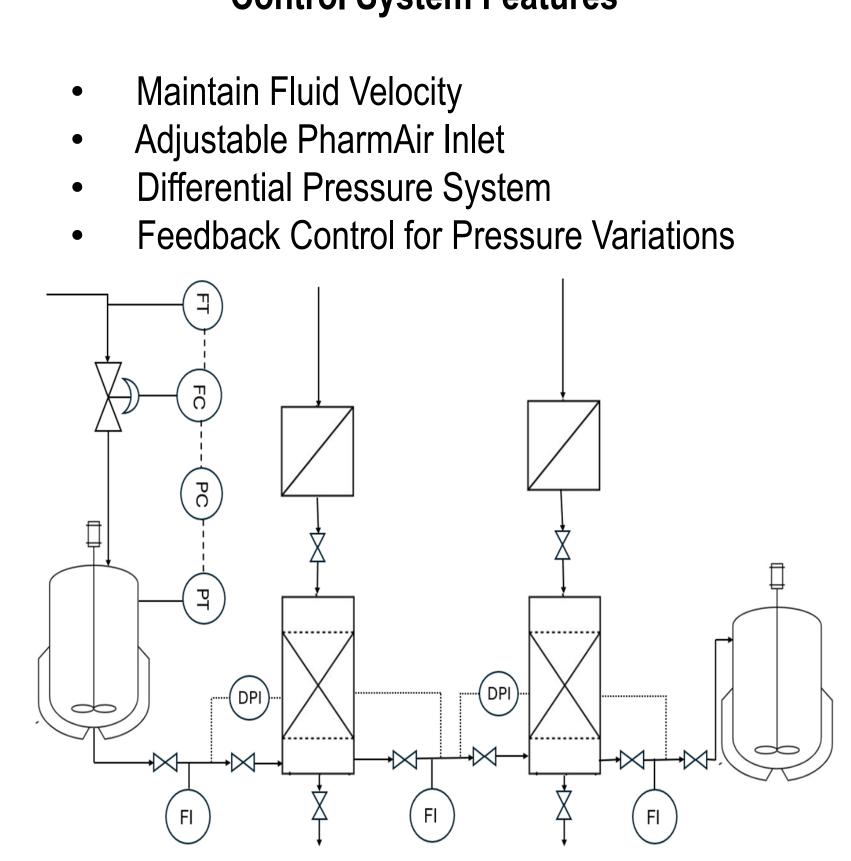

Purpose: Evaluate filtration skid designs to address process inefficiencies, economics, and environmental impacts.

Pfizer currently reports several inefficiencies with sterile product filtration and has requested an evaluation of current designs. Currently, several options exist: many reusable stainless-steel designs and single-use plastic designs. Each design has two filter steps and requires a filter integrity testing procedure. Some current issues include poor connections on both disposable and reusable designs, slow filter times, and varying filter cartridge sizes.


Skid Evaluation Constraints

- Compatible with batch processing
- Economic and environmental comparison of reusable vs. disposable designs
- Simple operability
- Strong connections to ensure product sterility
- HAZOP Analysis of Process

Process Flow Diagram

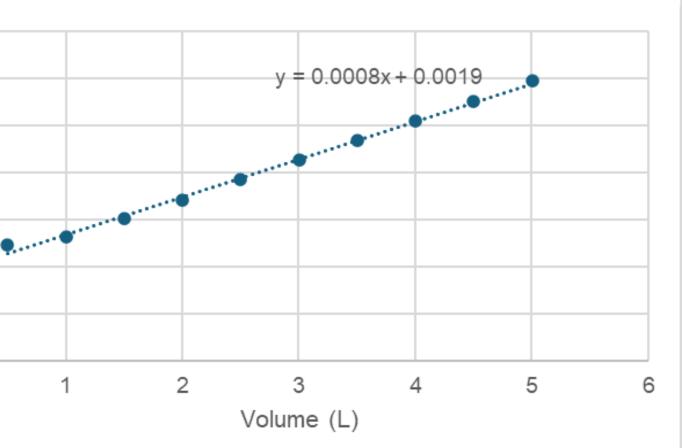


	0.007
	0.006
	0.005
////	0.004
11	0.003
+	0.002
	0.001
	0
	0

Figure 1. Batch filtration was modeled using filtrate volume and time to predict batch times.

Process Control Scheme

Pfizer Sterile Filtration Skid Design


Halle Tisovic, Evan Dunning, and Gavin Campbell **McKetta Department of Chemical and Environmental Engineering** Advisors: Dr. Amanda Malefyt, Brooke Hardy

Fluid Dynamics

A flow rate of 20 L/min was used as a basis for these

Variable	Est. Range
Shear Rate	2000 – 4000 1/s
nold's Number	15 – 20
ressure Drop	0.5 – 1.5 bar
Pump Duty	196 W

Analysis of differential pressure against flow rate for Sartorius T-Style Maxicap filter cartridge. Comparing manufacturer's data to calculated process parameters.

Control System Features

Sterile Connections

Five types of sterile connections were evaluated for this process. Connector Requirements:

- 20 L/min flow rate
- 75 psi max operating pressure
- Minimal pressure drop and shear
- Must handle steam and/or chemical sterilization.

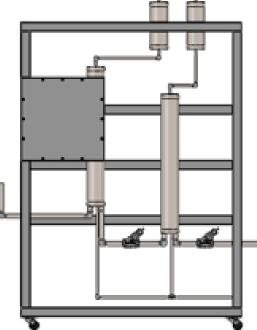
We propose using CPC AsepticQuick STC connectors for the filtration skid design. They address leakage concerns associated with earlier models and offer partial reusability. The stainless-steel part remains attached during sterilization, while a new connector is used for each batch, ensuring sterility and efficiency.

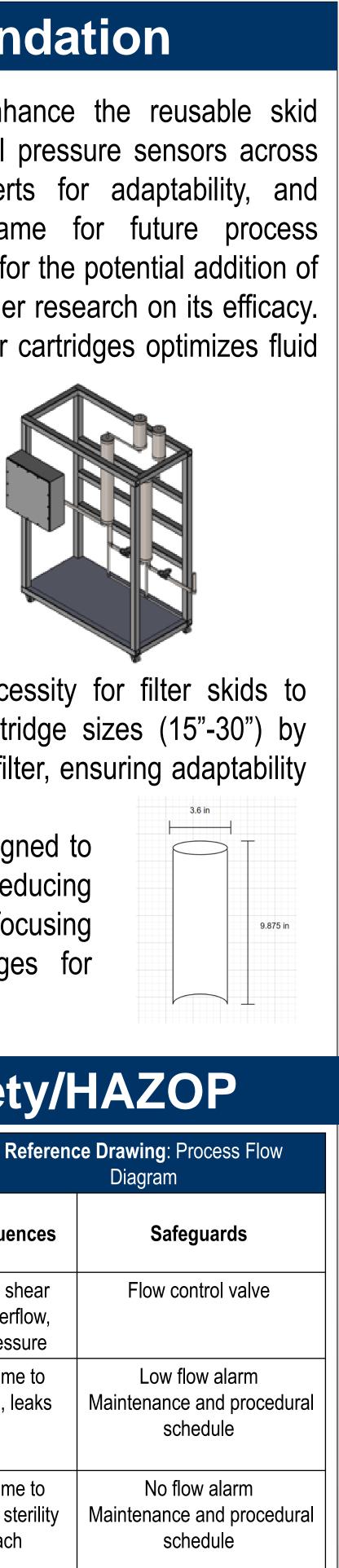
The Watson-Marlow Quantum Bioprocessing Pump meets the specified fluid dynamics parameters, accommodates sterile connections, and can be sterilized with the skid. This pump can be mounted directly on the skid frame before the first filter assembly.

Economics and Environmental

An estimation of 80 batches/year was used for economic calculations over a 20-year lifespan with an interest rate of 12%. The net present values of both disposable and reusable skid designs were compared. With these parameters, a breakeven point between the skid was estimated at less than one year.

Туре	NPV (M USD)	Initial Investment	Annual Cost
Reusable	-2.05	\$120,000	\$292,000
Disposable	-3.07	\$0	\$460,000


The environmental impact of the incineration of the disposable skids was also analyzed. For the estimated number of batches annually, incineration would produce nearly 9 tons of CO_2 annually. Over the lifespan of this process, this results in nearly 180 tons of carbon emissions.


Pfizer

Recommendation

Our recommendation is to enhance the reusable skid design by integrating differential pressure sensors across filters, incorporating filter inserts for adaptability, and designing a flexible skid frame for future process adjustments. The design allows for the potential addition of a peristaltic pump, pending further research on its efficacy. A 6" vertical offset between filter cartridges optimizes fluid flow.

This design addresses the necessity for filter skids to accommodate varying filter cartridge sizes (15"-30") by designing the casings for a 30" filter, ensuring adaptability to future process requirements.

Polycarbonate inserts were designed to secure shorter cartridges, reducing internal casing volume and focusing fluid flow around the cartridges for enhanced filtration efficiency.

Pro	ocess Uni	Reference Drawing : Diagran						
Process Parameter	Guide Word	Possible Causes	Cor	isequences	Sa			
Flow	Higher	Control valve failure	rat	ceed shear e, overflow, erpressure	Flow			
	Lower	Connection blockage Connection leak		ktra time to ocess, leaks	Low Maintenan s			
	No	Closed valve Pipe blockage Filter blockage		xtra time to cess, sterility breach	No Maintenan s			
Pressure	Higher	Closed valve Pipe blockage	incre of filt	essurization eases the risk er failure and ntamination	Pressu High p			
	Lower	Pipe blockage Reverse flow	Ste	erility breach	Integrat			

Process Safetv/HAZOP

ure Control loop pressure alarm

ated loop system