A Great Scientific Presentation

Matthew W. Liberatore **Department of Chemical Engineering** October 2019

Thank you to Colin Wolden, John Persichetti, and NSF **REU grant 2011-2014**

Outline

Introduction

Why you should care about me talking to you?

I'm going to save some global grand challenge

Methods

Plots / Tables / Animation

The Good, the Bad, the Ugly

Results

Project 1

Project 2

Conclusions

Acknowledgments

35 words

Outline

Preparation

Who is the audience? What is the purpose?

Organization / Templates

Graphics Plots / Tables / Animation Good, Bad, Ugly

Delivery

Voice / Hands / Eyes Lighting / Lasers / Timing 25 words

Keys to a great presentation

Preparation

Visuals

Delivery

8 words

Know your audience

Boss

Specialists

General Scientific

General Public

Know the room

Conference room or auditorium

10, 100, 1000 people

Do I need a microphone?

How long is the talk?

Highlights: 2 – 3 slides

Class presentation: 10 – 15 minutes

Conference Talk: 15 – 25 minutes

Invited Lecture/Seminar: 45 – 60 minutes

slides x (0.5 - 1) = Total Minutes

Timing is everything

Rubric criteria included 14 to 18 minutes in length

Establish your goal

Sell, Educate, Impress?

Points of emphasis

Take home message(s)

Details for the time and audience

Tell them what you told them

Should conclusion go at the beginning?

Slide construction big picture

My preferences:

White background + pop of color

Font/color/symbols: simplicity & consistency

1 graphic element = focus the eyes

Support 'bullet' points

Disclaimer: More subjective than most topics

Slide construction basics

Formatting = Branding

Industry standard

Header/Footer

Logos

Simple fonts

Good = clean, sans serif

Arial, Calibri, Droid sans

Bad = serif

Times New Roman, Cambria

Bullets are for...

Avoid bullet symbols

But if you insist

• Better

Easiest way to limit wordiness

Slide structure

Consistency is Key

Do NOT mix fonts/SIZES/colors

Spell check!

Try not to make go longer than 1 dumb

bulleted statements line becsuse it looks

Title is THE main point

Optional take home point - callout

Graphics

Appropriate

Not distracting

Not part of slide background

Picking the right visual

- Figures
 Critical for communicating data
- 2. Tables NEVER USE TABLES
- Animations & Movies
 Great tool...but can also be disastrous
 Use judiciously

I have so much great data in this table

	А	В	С	Low T (°C)	High T (°C)	Τr
Toluene	7.1362	0 1457.29) 231.827	-94.97	318.64	
Toluene						
Water	7.1362	0 1457.29	231.827	-94.97	318.64	
Water	8.05573	3 1723.6 ²	233.076	0.01	373.98	
m- Xylene	8.05573	3 1723.6 ⁴	233.076	0.01	373.98	
m- Xylene	7.1811	5 1573.02	2 226.671	-47.85	343.9	
o-Xylene	7.1811	5 1573.02	2 226.671	-47.85	343.9	
o-Xylene	7.14914	4 1566.59	9 222.596	-25.17	357.22	
p-Xylene	7.1491	4 1566.59	222.596	-25.17	357.22	
p-Xylene	7.1547	1 1553.98	5 225.230	13.26	343.11	

range

413.61

- 413.61
- 373.97
- 373.97
- 391.75
- 391.75
- 382.39
- 382.39
- 329.85

Somewhat better table

Compon				Low T	High T
ent	A	В	С	(°C)	(°C)
Toluene	7.13620	1457.29	231.827	-94.97	318.64
Water	8.05573	1723.64	233.076	0.01	373.98
m-Xylene	7.18115	1573.02	226.671	-47.85	343.9
o-Xylene	7.14914	1566.59	222.596	-25.17	357.22
p-Xylene	7.15471	1553.95	225.230	13.26	343.11

Still better, but ...

Component	Α	В	С	Low T (°C)	Hig (°(
Toluene	7.14	1457	232	-95	32
Water	8.06	1724	233	0	37
m-Xylene	7.18	1573	227	-48	34
o-Xylene	7.15	1567	223	-25	35
p-Xylene	7.15	1554	225	13	34
			D		

$$\log_{10}\mathsf{P}^{\mathsf{sat}} = \mathsf{A} - \frac{\mathsf{B}}{\mathsf{T} + \mathsf{C}}$$

Avoid tables if at all possible

Charts using default settings = lazy

Toluene/Psat (mmHg) vs. T (C)

m-Xylene

Water

Graphs >>> Tables

Rheologists love log scale

One figure, one format

Figures in journals rarely translate to presentations

Fig. 11. SAXS patterns of (PCMS)₆₀-(PCOE)₂₈₈-(PCMS)₆₀ functionalized with MPRD and not cross-linked (a), and with 7.5 mol% DT (b) and 12.5 mol% DT (c) crosslinks as a function of relative humidity.

Liu, Y., et al., Solid State Ionics, 2018. **316**: p. 135-142.

Figures basics

Do

Close plot box Inside tick marks Use color for contrast

Do not Use gridlines Too many ticks, sets of data, numbers

Figures guidelines

Axes, Labeling

- Use largest fonts possible, can be bold
 - Direct Labeling > Legend Box

Points vs. Lines

- Data: Use <u>un</u>connected points
 - Exception: spectra
- Include error bars when possible
- Lines: Indicate Model or Fit
- Color is usually good to distinguish Avoid yellow

Delivery Skills

Practice!!!

Know your slides

Timing + Pauses + Transitions Do NOT block/blind audience

Be yourself, humor can work great

Verbalize your story

Demonstrates a strong, positive feeling

Project a clear voice with correct pronunciation

Let all audience members hear you

Minimize stall words (um, uh)

Present your story

Look "at" your audience Minimize reading notes Do NOT face or read slides

Relax and be confident

Movements can help the audience visualize

Keys to a great presentation

Preparation

Visuals

Delivery

Preparing a great presentation

Establish goals

Know the room

Organize your story

Seeing a great presentation

Slide quality & consistency

Great slide is self-explanatory

Simple mix of graphics & words

Giving a great presentation

Practice

Practice

Practice

Acknowledgments

Thank supporters (people + funding)

Thank collaborators, co-workers (but not co-authors)

Thank the audience for paying attention

Invite Questions

Other things

Aspect ratio - Old (4:3) vs HD (16:9)

VGA vs HDMI (adapters)

Laser vs. pointer

Copyright/royalty free images – Pixabay.com

Other sources

http://designtaxi.com/news/370150/Tips-On-How-To-Create-Great-Visual-Presentations/

http://www.briantracy.com/blog/business-success/16-powerpoint-presentation-tips-examples/

https://www.linkedin.com/pulse/16-tips-awesome-powerpoint-presentation-brian-tracy

http://www.slideshare.net/deckworks/8-tips-to-create-epic-visual-presentations

https://www.slideshare.net/Amanda627/examples-of-good-and-bad-slides

http://blog.hubspot.com/blog/tabid/6307/bid/34274/7-Lessons-From-the-World-s-Most-Captivating-Presenters-SlideShare.aspx#sm.000e7od9s19krdp8zln2et64eumym

https://www.powtoon.com/presentation/5-best-presentations/

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030077

http://sholl.chbe.gatech.edu/david_sholl.html

http://physicstoday.org/jobs/webinar-outstanding-oral-presentations

Slides and rubrics available

<u>http://www.utoledo.edu/engineering/chemical-</u> engineering/liberatore/engineeringeducation.html

Text your questions or raise hand

Keys to a great presentation

Preparation

Visuals

Delivery

